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Abstract 0 The aim of this study was to determine the efficacy of
atom-type electrotopological state indices for estimation of the octanol−
water partition coefficient (log P) values in a set of 345 drug
compounds or related complex chemical structures. Multilinear
regression analysis and artificial neural networks were used to construct
models based on molecular weights and atom-type electrotopological
state indices. Both multilinear regression and artificial neural networks
provide reliable log P estimations. For the same set of parameters,
application of neural networks provided better prediction ability for
training and test sets. The present study indicates that atom-type
electrotopological state indices offer valuable parameters for fast
evaluation of octanol−water partition coefficients that can be applied
to screen large databases of chemical compounds, such as combi-
natorial libraries.

Introduction

The logarithm of the partition coefficient between octanol
and water, log P, is extensively used to describe lipophilic
or hydrophobic properties of chemical compounds. It has
been shown that log P is a useful parameter to correlate
transport properties of drug molecules, interactions be-
tween drugs and receptors, and changes in the structure
of drugs with various biochemical or toxic effects of these
compounds.1 The measurement of log P throughout the
synthesis of the compound and its subsequent experimental
determination is time-consuming and expensive. Hence,
there is a strong interest in the structure-based prediction
of log P for rational development of new drugs before
potential drug compounds have been synthesized.

Several approaches for computing log P on the basis of
chemical structure have been proposed. Among others
there are two essentially empirical methods for the estima-
tion of log P: Rekker’s f constant method and Leo and
Hansch’s fragment approach.3 Both methods divide a
compound into basic fragments and calculate its log P by
the summation of the hydrophobic contributions of each
fragment. However, the difficulties of these methods is how
to fragment a molecule, especially large drug molecules,
into basic fragments. New fragment methods (atomic
fragments) were developed to overcome this problem.4-6

These methods are conceptually simple and are able to give
fast and accurate estimations for diverse organic com-
pounds. However, correction factors are usually needed for

complex structures to compensate for the interactions
between functional groups.

Recently, Kier and Hall7,8 introduced electrotopological
state (E-state) indices for molecular structure description
in which both electronic and topological characteristics are
combined together. The E-state can be used in a group
contribution manner and has been found to be useful in
structure-property relationship studies. Using only these
indices and neural network modeling, Hall and Story9 were
able to predict the boiling points and critical temperatures
for a set of heterogeneous organic compounds.

In our recent studies we suggested methods for estima-
tions of aqueous solubility, log S, of structurally related10

and diverse sets11 of drug compounds based on molecular
topology and neural network modeling. The present study
shows that the same indices can be successfully used to
estimate log P coefficients, another important solubility
property of drug compounds for drug design studies.

Experimental Section
Three hundred twenty-six drugs or related compounds from

different structural classes were randomly selected from the
Hansch-Leo compilation.12 The partition coefficients of these
compounds were represented as logarithm values, log P, and were
in the range -2.11-5.9, corresponding to urea and thioridazine,
respectively. This data set was divided into a training set of 300
compounds and a test set of 26 compounds (selected at random).
An additional test set of 19 compounds13 was included in the
present study to compare our approach with currently available
ones.

Structural parameters were calculated by Molconn-Z software
(Hall Associated Consulting, Quincy, MA). Molecular weights and
32 atom-type E-state indices were calculated for each analyzed
compound by SMILES line notation code. These 33 parameters
were analyzed using multilinear regression (MLR) analysis and
artificial neural networks (ANNs). MLR analysis was done with
the SPSS package (v. 5.1, SPSS Inc., Chicago, IL) running on a
Pentium PC. The ANNs employed in this study were fully
connected feed-forward back-propagation networks with one hid-
den layer and bias neurons. ANN training was accomplished using
the SuperSAB algorithm.14 The logistic f(x) ) 1/(1+e-x) activation
function was used both for hidden and output nodes. All calculated
parameters and the set of parameters optimized by MLR were
used for neural network training. The number of neurons in the
hidden layer was optimized as indicated in the Results section.
One single output node was used to code log P values.

The avoidance of overfitting/overtraining has been shown to be
an important factor for improvement of generalization ability and
correct selection of variables in neural networks studies.14,15 The
Early Stopping over an Ensemble technique was used in the
current study to accomplish this problem. A detailed description
of this approach can be found elsewhere.14,15 In brief, each analyzed
ensemble was composed of M ) 100 networks. The values
calculated for analyzed cases were averaged over all M neural
networks, and their means were used for computing statistical
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coefficients with targets. We used a subdivision of the initial
training set into two equal learning/validation subsets. The first
set was used to train the neural network, whereas the second one
was used to monitor the training process measured by root-mean-
square error. An early stopping point determined as a best fit of
a network to the validation set was used to stop the neural network
learning. It was shown that a neural network trained up to an
early stopping point provided better prediction ability than a
network trained to the error minimum for the learning set.10,14

Thus, statistical parameters calculated at the early stopping point
were used. The training was terminated by limiting the network
run to 10 000 epochs (total number of epochs) or after 2000 epochs
(local number of epochs) following the last improvement of root-
mean-square error at the early stopping point.

The computer code for the ANN was programmed in ANSI C++.
The calculations were performed at HP Workstation Cluster at
the Swiss Center for Scientific Computing.

The quality of the models was tested in two ways. An analysis
of predictive ability was done in terms of both predictive q2 and
actual prediction. Predictive q2 in leave-one-out cross-validation
was defined as

Here, SSY is the sum of squares of the deviation between the
observed log P values and their mean value and PRESS is the
prediction error sum of squares obtained from leave-one-out (LOO)
procedure. The standard deviation sLOO was also considered. This
coefficient was defined as

where n was the number of compounds in the model. In addition,
the two test sets already described were used to estimate the
actual prediction of the models using square of correlation coef-
ficient r2 and standard deviation s.

Results and Discussion
A total of 32 atom-type E-state indices (Table 1) and

molecular weights were used as parameters for analysis
by MLR and ANNs. Stepwise and backward methods were
employed in the regression analysis and the following 19
parameters yielded a satisfactory statistical model:

log P ) 0.228 ((0.021) SsCH3 + 0.294 ((0.072) SdCH2
+ 0.275 ((0.023) SssCH2 + 0.171 ((0.011) SaaCH + 0.221
((0.053) SsssCH - 0.190 ((0.063) SdssC + 0.215 ((0.044)
SaasC + 0.246 ((0.047) SaaaC - 0.093 ((0.016) SsNH2 -
0.198 ((0.028) SssNH - 0.051 ((0.013) SaaN - 0.360
((0.039) SsssN + 0.013 ((0.004) SdO - 0.035 ((0.013)
SssO + 0.071 ((0.006) SsF + 0.264 ((0.068) SdS + 0.199
((0.098) SssS + 0.444 ((0.185) SaaS + 0.187 ((0.025) SsCl
- 0.468 ((0.124).

where n is the number of compounds used in the fit, F is
the overall F-statistics for the addition of each successive
term, and values in parentheses are the 95% confidence
limit of each coefficient. The correlation analysis for
parameters in eq 3 showed that all pairwise correlations
were R < 0.5, indicating a low multicollinearity as well.

For neural network studies, a preliminary analysis using
all available parameters was done to determine the optimal
number of neurons in the hidden layer chosen in the set 2,
3, 5, 7, 10, 15, and 30. The performance of neural networks
was evaluated by LOO statistical coefficients calculated at
early stopping point for the training data set. We found
that q2 increased (i.e., q2 ) 0.824 ( 0.002, 0.825 ( 0.002,
0.829 ( 0.003) when the number of neurons in the hidden

layer was changed from 2 to 5. However, further increase
in the number of hidden neurons from 7 to 30 did not
influence the prediction ability of neural networks (i.e., q2

) 0.829 ( 0.002, 0.828 ( 0.003, 0.829 ( 0.002, 0.830 (
0.003). Thus, we fixed the number of neurons in the hidden
layer equal to 5.

Neural networks represents essentially nonlinear meth-
ods of data analysis. However, the use of ANNs for the
same set of parameters provided a prediction ability similar
to that of MLRs for compounds in the training set. In LOO
cross-validation procedures, ANNs gave q2 ) 0.84 and sLOO

) 0.69 for the same set of parameters as in regression
analysis, and q2 ) 0.83 and sLOO ) 0.70 for all calculated
parameters. The prediction ability of the MLR model given
by the PRESS statistics, sLOO ) 0.71, is only 0.03 log units

q2 ) (SSY - PRESS)/SSY (1)

sLOO ) [PRESS/n]1/2 (2)

(n ) 300, r2 ) 0.87, s ) 0.68, F ) 87.5, q2 )
0.83, sLOO ) 0.71) (3)

Table 1sThe Atom-Type E-State Indicesa Used in Multilinear
Regression and Neural Network Models

index value

no. symbolb atom typec min max training set test set MLRd

1 SsCH3 sCH3 0 12.9 158e 33
2 SdCH2 dCH2 0 4.0 7 2
3 SssCH2 sCH2s −1.0 14.7 170 36
4 StCH tCH 0 5.7 4 0 X
5 SdsCH dCHs 0 6.0 60 5 X
6 SaaCH ..CH.. 0 26.0 256 43
7 SsssCH sCH< −4.7 3.1 107 18
8 StC tCs 0 2.8 5 2 X
9 SdssC >Cd −3.1 3.1 153 27

10 SaasC ..C.. −3.8 6.8 225 42
11 SaaaC ..C.. 0 8.1 51 3
12 SssssC >C< −6.8 0.5 70 11 X
13 SsNH2 sNH2 0 17.2 72 11
14 SssNH sNHs 0 8.1 100 22
15 StN tN 0 10.2 2 2 X
16 SdsN dNs 0 8.1 17 6 X
17 SaaN ..N.. 0 19.8 77 7
18 SsssN >Ns 0 7.6 95 24
19 SddsN sN, −0.7 0 6 0 X
20 SsOH sOH 0 43.3 118 16 X
21 SdO dO 0 47.6 167 26
22 SssO sOs 0 21.9 63 16
23 SaaO ..O.. 0 5.7 9 0 X
24 SsF sF 0 39.9 26 3
25 SsSH sSH 0 4.1 3 0 X
26 SdS dS 0 10.7 6 1
27 SssS sSs 0 3.7 24 8
28 SaaS ..S.. 0 1.7 7 0
29 SdssS dS< −1.0 0 1 0 X
30 SddssS >S, −8.9 0 29 3 X
31 SsCl sCl 0 12.2 23 9
32 SsBr sBr 0 3.4 1 0 X

a According to Hall and Kier.8 b S states for the sum of the E-state values
for a certain atom type or group; the sum for the hydroxyl groups is SsOH,
for the ether or ester oxygen it is SssO, and for the keto oxygen it is SdO.
c The formula of the atom type or group; the bond types between the heavy
atoms are s ) single (s), d ) double (d), and a ) aromatic (..). d The
parameters that were eliminated in MLR regression are marked by X. e The
number of compounds with the index.

Table 2sComparison of the Predictive Ability of MLR and ANN
Models

training set test set 1 test set 2

model params #a q2 sLOO r2 s r2 s

MLR regressed 19 0.83 0.71 0.87 0.71 0.83 0.68
ANN1 regressed 19 0.84 0.69 0.90 0.62 0.84 0.62
ANN2 all 33 0.83 0.70 0.91 0.60 0.87 0.57

(0.93)b (0.50) (0.91) (0.46)

a The number of input parameters in the model. b The results after
excludance of loratidine and flufenamic acid are shown in the parentheses.
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higher than for the fitting model. Such a small increase
indicates a robustness of the model.

The generalization ability of ANNs for the test sets was
higher than that of MLR (Table 2). As in the case of the
training set, the best predictions were calculated using all
parameters. The results calculated using ANNs for the test
set 2 (n ) 19, r2 ) 0.87, s ) 0.57) are comparable with
those found using other known methods, such as CLOGP
(r2 ) 0.94, s ) 0.44), XLOGP (r2 ) 0.89, s ) 0.54), and
Moriguchi’s method (r2 ) 0.87, s ) 0.63), and are better
than that of the Rekker’s method (r2 ) 0.84, s ) 0.79) (see
Table 3).

The analysis of residuals showed that there were several
compounds with a large calculation error in the training
set. The compounds with a residual >1.4 log units, that is
two times the standard deviation, are shown in Table 4.

We found that two compounds in the analyzed test sets,
loratidine (Test set 1) and flufenamic acid (Test set 2), were
also characterized by high ANN prediction errors of 1.82
and 1.44 log units, respectively (Table 3). The elimination
of these compounds from the test sets significantly im-
proves prediction ability of ANNs (Table 2).

The low prediction ANN ability for loratidine and flufe-
namic acid and some other compounds from the training
set can be explained by an analysis of the residuals. These
two compounds have experimental log P values near to the
largest value (5.90) in the training set. Let us note that
for log P > 5.0, there were four compounds with large
residual errors in the training set. However there were in
total only seven compounds with such log P values in our
training dataset. Thus, >50% of compounds with log P >
5.0 were poorly predicted. This result suggests that the

Table 3sExperimental and Estimated Log P Values for the Test Sets
A. test set 1

predicted

no. compound log Pexp MLR ANN2

1 acyclovir −1.56 −1.70 −1.52
2 adrenalin −1.37 0.10 −0.66
3 pyridoxine −0.77 0.08 −0.59
4 isoniazid −0.70 −0.14 −0.39
5 metaraminol −0.27 0.46 −0.01
6 theophylline −0.02 −0.22 −0.40
7 atenolol 0.16 1.13 0.83
8 sulpride 0.57 0.93 1.21
9 mescaline 0.78 1.25 1.18

10 primidone 0.91 0.97 0.82
11 carbutamide 1.01 0.85 0.76
12 ampicillin 1.35 0.91 1.12
13 clonidine 1.59 2.17 1.45
14 nalorphine 1.86 1.90 1.96
15 phenoxymethylpenicillin 2.09 1.40 1.67
16 hydrocortisoneacetate 2.19 2.01 2.05
17 lorazepam 2.39 3.81 3.28
18 dibenzepin 2.50 2.81 2.81
19 phenazine 2.84 2.71 2.38
20 ketoprofen 3.12 4.29 3.80
21 chlorpheniramine 3.38 4.61 4.19
22 disulfiram 3.88 4.06 3.18
23 fenethazine 4.20 2.84 3.39
24 methoxypromazine 4.90 4.15 4.26
25 trifluorperazine 5.03 4.95 4.57
26 loratidine 5.20 4.54 3.38

B. test set 2a

no. compound log Pexp ANN2 XLOGPb Moriguchib Rekkerb CLOGPb

1 chlorthiazide −0.24 0.39 −0.58 −0.36 −0.68 −1.24
2 cimetidine 0.40 0.19 0.20 0.82 0.63 0.21
3 procainamide 0.88 1.32 1.27 1.72 1.11 1.11
4 trimethoprim 0.91 0.52 0.72 1.26 −0.07 0.66
5 chloramphenicol 1.14 1.29 1.46 1.23 0.32 0.69
6 phenobarbital 1.47 1.86 1.77 0.78 1.23 1.37
7 atropine 1.83 2.43 2.29 2.21 1.88 1.32
8 lidocaine 2.26 2.65 2.47 2.52 2.30 1.36
9 phenytoin 2.47 2.63 2.23 1.80 2.76 2.09

10 diltiazem 2.70 3.36 3.14 2.67 4.53 3.55
11 propranolol 2.98 3.22 2.98 2.53 3.46 2.75
12 diazepam 2.99 3.18 2.98 3.36 3.18 3.32
13 diphenhydramine 3.27 4.11 3.74 3.26 3.41 2.93
14 tetracaine 3.73 2.70 2.73 2.64 3.55 3.65
15 verapamil 3.79 4.33 5.29 3.23 6.15 3.53
16 haloperidol 4.30 4.41 4.35 4.01 3.57 3.52
17 imipramine 4.80 4.47 4.26 3.88 4.43 4.41
18 chlorpromazine 5.19 4.85 4.91 3.77 5.10 5.20
19 flufenamic acid 5.25 3.81 4.45 3.86 5.81 5.58

a This set was originally proposed by Moriguchi et al.13 b The results calculated by XLOGP, CLOGP, and Moriguchi’s and Rekker’s methods are from ref 4.
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number of analyzed molecules with high log P values did
not provide a representative training data set for correct
application of the analyzed methods and the training set
should be extended by including more compounds with high
log P values.

The atom-type E-state indices are used in a manner
similar to group additive schemes. Each atom in the
molecular graph is presented by an E-state value that
encodes the intrinsic electronic state of the atom perturbed
by the electronic influence of all atoms in the molecule
within the context of topological character of the molecule.
Thus, the E-state for a given atom (or atom type) varies
from molecule to molecule and depends on the detailed
structure of the molecule. An analysis of residuals (Table
4) provided some hints of which structural features makes
difficulties for the proposed method. There were four
carboxylic acids (2,4-dihydroxybencoic acid, salicylic acid,
mefenic acid, and tolfenamic acid) and hydroxyl-containing
compounds (riboflavine, R-methylnoradrenalin, pyridox-
amine, and DES), which all have a large calculation error.
Also, both of the compounds with a large calculation error
in the test sets contain a carbonyl group; that is, loratidine
contains the ester carbonyl and flufenamic acid has a
carboxylic acid group.

The reason for low prediction results for the compounds
just mentioned can be explained by the fact that all E-state
values calculated for hydroxyl groups are used to calculate
only one parameter, SsOH, and no division for different
types (i.e., alcohol, phenols, and carboxylic acids) is made.
Likewise, the parameter SdO accounts for carbonyl oxygen,
making no distinction between neighbor atom type (i.e.,
carboxylic acids, amides, ketones, and esters). The effects
of the atom group could be considered similarly to the group
contribution approach.5,6,16 In this approach, contribution
values are calculated separately for hydroxyl groups in
aliphatic and aromatic compounds and for carbonyl oxygen-
containing compounds, the division is made between car-
boxylic acids, esters, aldehydes, ketones, and amides. In
both cases, the contribution values varied considerably,
depending on the type of the atom group. Nearly all
compounds with a large calculation error in our training

set contain different types of hydroxyl and carbonyl com-
pounds. Thus, it might be possible that the atom-type
E-state index values for hydroxyl (SsOH) and carbonyl
(SdO) groups are not enough to discriminate them accord-
ing to their binding environment. We suggest that the
usefulness of E-state formalism could be improved by
taking into account the binding environment of an atom
type, especially in the case of hydroxyl and carbonyl groups,
like in Meylan’s atom/fragment contribution method5 and
in Klopman’s group contribution approach.6,16

The atom-type E-state indices are similar to some extent
to the group contribution variables (e.g., numbers of
-CH2- groups instead of SssCH2). It is possible to assume
that the same results would be calculated if these variables
were used instead of the atom-type E-state indices. The
numbers of atom-types computed using Molconn-Z software
and the molecular weights were fitted as input parameters
for MLR and ANNs. The best MLR model calculated using
stepwise and backward methods contained the following
15 indices:

where I refers to the number of groups corresponding to
the appropriate atom-type E-state index and MW is the
molecular weight (Table 2). The prediction ability of this

Table 4sCompounds with Large Prediction Errors in the Training Set

MLR ANN2

no. compounda log Pexp log Pcalc resid log Pcalc resid

4 methotrexate −1.85 −0.84 −1.01 0.09 −1.94
6 penicillaminea −1.78 −0.07 −1.71 0.14 −1.93

10 riboflavine −1.46 0.00 −1.46 −0.24 −1.22
11 R-methylnoradrenalin −1.43 0.11 −1.54 −0.36 −1.07
15 thiourea −1.08 0.51 −1.59 0.62 −1.70
22 phenformin −0.83 0.45 −1.28 0.58 −1.41
56 cephalotin 0.00 1.60 −1.60 1.41 −1.41
64 ranitidine 0.27 1.16 −0.89 1.77 −1.50

102 triamteren 0.98 −0.66 1.64 −0.72 1.70
119 minoxidil 1.24 −0.39 1.63 −0.46 1.69
144 2,4-dihydroxybencoic acid 1.63 0.29 1.34 −0.39 2.01
150 timolol 1.83 0.36 1.47 −0.08 1.91
174 clobazam 2.12 3.32 −1.20 3.52 −1.40
183 ketamine 2.18 3.20 −1.02 3.64 −1.46
190 salicylic acid 2.26 0.81 1.45 0.54 1.72
207 thiophenol 2.52 1.43 1.09 0.64 1.88
222 LSD 2.95 1.46 1.49 1.42 1.52
228 papaverine 2.95 4.11 −1.16 1.61 1.45
251 piroxicamine 3.06 1.79 1.27 1.75 1.68
261 dextromoramide 3.61 4.68 −1.07 2.40 1.50
293 DES 5.07 3.65 1.42 3.02 2.04
294 mefenic acid 5.12 3.22 1.90 3.19 1.93
294 tolfenamic acid 5.17 3.56 1.61 3.64 1.53
300 thioridazine 5.90 4.97 0.93 4.50 1.40

a Compounds with absolute value of residuals >1.4 log units (two times the standard deviation of the prediction error) for MLR and ANNs are shown.

log P ) 0.163 ((0.072) ISsCH3 + 0.164 ((
0.038) ISssCH2 + 0.128 ((0.037) ISaaCH + 0.260 ((
0.062) ISaasC + 0.471 ((0.090) ISaaaC - 0.766 ((
0.162) ISsNH2 - 0.454 (0.126) ISssNH - 0.522 ((
0.264) ISdsN - 0.457 ((0.095) ISaaN - 0.465 ((

0.119) ISsssN - 0.361 (0.107) ISsOH - 0.516
(0.122) ISssO + 0.254 ((0.111) ISsF - 0.472 ((

0.231) SddssS + 0.0046 ((0.0012) MW + 0.145 ((
0.234)

(n ) 300, r2 ) 0.55, s ) 1.18, F ) 23.4, q2 )
0.49, sLOO ) 1.23) (4)
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equation was r2 ) 0.59, s ) 1.26 and r2 ) 0.13, s ) 1.67 for
test sets 1 and 2, respectively. ANNs computed similar
results; that is, q2 ) 0.48, sLOO ) 1.24 for the training set
and r2 ) 0.59, s ) 1.29 and r2 ) 0.22, s ) 1.74 for test sets
1 and 2, respectively. Thus, both MLR and ANN methods
provided significantly worse results if the group contribu-
tion variables were used instead of atom-type E-state
indices. To understand these results, recall that the atom-
type E-state indices account both for electronic and topo-
logical characteristics of the molecular structure. It is also
important that the range of the atom-type E-state indices
(Table 1) is considerably larger than that calculated by
counts of the number of corresponding groups. This fact
also significantly contributes to the performance and high
prediction ability of models based on the atom-type E-state
indices.

The most important advantage of the present approach
is that only 32 parameters and no corrections factors were
used for coding each molecule, whereas other methods
require hundreds of parameters.2-6,17 We are well aware
of the shortcoming of the present model. Topological indices
cannot account for three-dimensional and conformational
effects, which may play a major role for solubility properties
of chemical compounds, as recently suggested by Palm and
co-workers.18 However, topological indices are attractive
because they can be easily and rapidly calculated from the
structures of analyzed compounds. This feature makes it
possible to obtain fast estimations of the solubility proper-
ties of compounds belonging to large databases, such as
virtual combinatorial libraries. Probably, these indices can
also be used to improve the prediction ability of other
methods that are based on calculation of theoretical
descriptors derived from the molecular structures of com-
pounds.19,20

The prediction of partition coefficients using atom-type
E-state indices is accurate and provides reliable log P
estimations that are comparable to those obtained by other
methods. An advantage of the proposed approach is that
the atom-type E-state indices can be quickly and easily
estimated directly from the chemical structure of analyzed
compounds. Moreover, the number of parameters is small.
Thus, the present approach introduces a fast method for
estimation of log P of chemical compounds.
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